5-Amino-2,4,6-tribromoisophthalic acid: the MAD triangle for experimental phasing

Tobias Beck, Regine Herbst-Irmer and George M. Sheldrick

Acta Crystallographica Section C: Crystal Structure Communications specializes in the rapid dissemination of high-quality studies of crystal and molecular structures of interest in fields such as chemistry, biochemistry, mineralogy, pharmacology, physics and materials science. The numerical and text descriptions of each structure are submitted to the journal electronically as a Crystallographic Information File (CIF) and are checked and typeset automatically prior to peer review. The journal is well known for its high standards of structural reliability and presentation. Section C publishes approximately 1000 structures per year; readers have access to an archive that includes high-quality structural data for over 10000 compounds.

Crystallography Journals Online is available from journals.iucr.org
5-Amino-2,4,6-tribromoisophthalic acid: the MAD triangle for experimental phasing

Tobias Beck,* Regine Herbst-Irmer and George M. Sheldrick

Department of Structural Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
Correspondence e-mail: tbeck@shelx.uni-ac.gwdg.de

Received 25 February 2009
Accepted 7 April 2009
Online 25 April 2009

The title compound, C₈H₄Br₃NO₄, shows an extensive hydrogen-bond network. In the crystal structure, molecules are linked into chains by COO—H/C₁/C₁/C₁O bonds, and pairs of chains are connected by additional COO—H/C₁/C₁/C₁O bonds. This chain bundle shows stacking interactions and weak N—H/C₁/C₁/C₁O hydrogen bonds with adjacent chain bundles. The three Br atoms present in the molecule form an equilateral triangle. This can be easily identified in the heavy-atom substructure when this compound is used as a heavy-atom derivative for experimental phasing of macromolecules. The title compound crystallizes as a nonmerohedral twin.

Comment

Heavy atoms are utilized for the derivatization of biological macromolecules to enable experimental phase determination. Nowadays, techniques are commonly used that exploit the anomalous scattering of certain atoms. SAD (single-wavelength anomalous dispersion) is suitable for in-house phasing if the atoms concerned have an appreciable anomalous signal at the Cu Kα wavelength. At a synchrotron, a series of experiments may be carried out close to the absorption edge of the particular heavy atom, maximizing the sum of the anomalous signals and the difference of the dispersive signals (multi-wavelength anomalous dispersion, MAD).

Incorporation of heavy atoms is required if the biomolecule does not possess sufficient intrinsic anomalous scatterers. Expression of a selenomethionine derivative enables structure solution by MAD or SAD methods. Incorporation of other anomalous scatterers such as halides (Dauter et al., 2000) or the tantalum bromide cluster (Schneider & Lindqvist, 1994) is achieved using less demanding approaches, e.g. soaking or cocrystallization of the native protein with the heavy-atom salt. However, most heavy-atom derivatives show low occupancies of the heavy-atom sites due to nonspecific binding.

We have recently reported the synthesis and characterization of 5-amino-2,4,6-triiodoisophthalic acid, hereinafter I₃C (Beck & Sheldrick, 2008). This is a representative of a new class of compounds that can be used for heavy-atom derivatization. It combines functional groups for hydrogen bonding to the protein with an easily recognizable arrangement of heavy atoms. It has been applied for SAD phasing (Beck et al., 2008). There is also a report of a novel structure that was solved using I₃C (Sippel et al., 2008). Unfortunately, I₃C cannot be used for multi-wavelength experiments since the energy of the iodine absorption edge is not accessible at a typical macromolecular crystallography synchrotron beamline.

Since MAD experiments yield better phase information, we were also interested in the analogous bromine compound (the bromine absorption edge falls within the normal energy range of a synchrotron beamline). This report characterizes the new phasing tool 5-amino-2,4,6-tribromoisophthalic acid, B₃C. Two carboxyl groups and one amino group for hydrogen bonding, combined with three Br atoms arranged in an equilateral triangle, render B₃C a suitable phasing tool for MAD experiments. B₃C has been used for MAD phasing with synchrotron data (Beck et al., 2009) and also for SAD phasing using data collected only at Cu Kα (Beck et al., unpublished results).

In the crystal environment, B₃C has no internal symmetry and crystallizes in the space group P₂₁/c with four molecules in the asymmetric unit. The bond lengths and angles fall within normal ranges. A displacement ellipsoid plot is shown in Fig. 1. In the crystal structure, molecules are linked to chains via COO—H/C₁/C₁/C₁O bonds (Fig. 2). The first carboxyl group of each molecule forms cyclic dimers with a neighboring carboxyl
group (e.g. O8—H8···O51 and O52—H52···O9; see Table 2 for details of the hydrogen-bond geometry), as observed frequently for carboxylic acids in the solid state (Leiserowitz, 1976). The second carboxyl group is also involved in hydrogen bonding, forming a one-dimensional chain (e.g. O12—H12···O48; see Table 2 for symmetry code). Instead of a dimeric interaction, one hydrogen bond is also formed to an adjacent chain (e.g. O29—H29···O11; Table 2). Therefore, a one-dimensional hydrogen-bond network is found in the crystal structure of B3C. In trimesic acid, with three carboxyl groups, a two-dimensional network is found, not limited to chains but extending within a plane (Duchamp & Marsh, 1976).

The hydrogen bonding of B3C. Molecules form chains that are connected pairwise to each other. Symmetry-equivalent C atoms are depicted in a lighter shade. For symmetry operators, please refer to Table 2.

A bundle of chains of B3C shows weak hydrogen bonding via one amino group (N33) to adjacent chain bundles (Table 2). In addition, stacking of benzene rings [ring C41–C46 with symmetry-equivalent ring C21iv–C26iv; symmetry code: (iv) x+1, 1/2+y, 3/2-z] is also observed as a contact between the chain bundles. No direct face-to-face contact is present, but rather an offset geometry, favoured by decreased π-π repulsion and increased σ-π attraction (Hunter & Sanders, 1990). Close C···C contacts are observed between atoms C42 and C25iv [3.690 (5) Å], C42 and C26iv [3.843 (5) Å], C43 and C25iv [3.803 (5) Å], and C43 and C26iv [3.843 (5) Å]. In addition, a close C···Br distance is also observed [C46···Br6iv = 3.620 (4) Å]. The angle between the two benzene ring planes is 7.9 (2)°.

The molecular arrangement in the crystal lattice differs from the packing found in crystals of the iodine derivative I3C (Beck & Sheldrick, 2008). In B3C, no solvent water molecule is present. Increased halogen–carbon bond lengths and van der Waals radii (2.15 Å for I versus 1.95 Å for Br; Weast, 1984) explain why the cyclic dimeric hydrogen bonds of two neighbouring carboxyl groups found in B3C are not favoured for I3C: the I atoms of two molecules would come in close proximity and repel each other. Hydrogen bonds to the solvent water molecule are observed for I3C. These are also present in unsubstituted 5-aminoisoephatic acid (Dobson & Gerkin, 1998), where, since the substituents are missing, the packing is different from that observed in I3C and B3C. The unsubstituted acid crystallizes as a zwitterion, with one carboxylate and an –NH$_3^+$ group. The carboxyl groups are in plane with the aromatic ring. The negative charge of the carboxylate group can therefore be delocalized across the π system, leading to an increase in acid strength compared with B3C and I3C. Here, clear indications for protonated carboxyl groups can be found (Table 1). In all carboxyl groups, one C—O bond is significantly shorter than the other, indicating one double bond and one single bond. Interestingly, the bond lengths for C30—O31/C30—O32 and C67—O68/C67—O69 do not show such large differences, but still indicate protonation of O31 and O68, respectively (Table 1).

The distance between Br atoms in B3C varies from 5.652 (1) to 5.695 (1) Å. For each B3C molecule, the Br atoms form an equilateral triangle that can be easily identified in the heavy-atom substructure when this compound is used as a heavy-atom derivative for experimental phasing of macromolecules.

The geometry of B3C as determined by this crystal structure has been used to generate restraints for the refinement of B3C in macromolecules (Beck et al., 2009). These restraints are available by email request from author TB.

The crystal is nonmerohedrally twinned. The first and second domains are related by a twofold axis about the real axis 1 0 0. Integration using both orientation matrices simultaneously was carried out using SAINT (Bruker, 2007). The fractional contribution of the second domain was refined to 0.3468 (6).

Experimental

B3C was prepared according to the method shown in the scheme (see Comment). 5-Aminoisoephatic acid (3.32 g, 18 mmol) was added to water (100 ml). Bromine (9.6 g, 3.0 ml, 60 mmol) was added dropwise with stirring. After stirring for 24 h, the resulting precipitate was filtered off, washed with small amounts of water and dried in vacuo. B3C was obtained as a pink–white solid (yield 4.98 g, 66%) and was recrystallized from a water–acetone mixture (1:1 v/v) by slow evaporation of the solvents to obtain crystals suitable for single-crystal X-ray diffraction.

Crystal data

$C_9H_4Br_3NO_4$
$M_r = 417.85$
$V = 4464.6 (11)$ Å3
$Z = 16$
Cu Kα radiation
μ = 13.44 mm$^{-1}$
$T = 100$ K
0.10 × 0.10 × 0.05 mm

Data collection

Bruker SMART 6000 diffractometer
Absorption correction: multi-scan
(TWINABS: Sheldrick, 2006a)
$T_{max} = 0.347$, $T_{min} = 0.553$

Refinement

$R[F^2 > 2σ(F^2)] = 0.026$
$wR[F^2] = 0.064$
$S = 1.13$
8717 reflections
626 parameters
106 restraints

Acknowledgements

We wish to thank the EPSRC for funding (Grant No. GR/M24671).

References

Figure 2

The hydrogen bonding of B3C. Molecules form chains that are connected pairwise to each other. Symmetry-equivalent C atoms are depicted in a lighter shade. For symmetry operators, please refer to Table 2.
H atoms were located in a difference Fourier map. The N—H and O—H bond lengths for amino and carboxyl H atoms were restrained to be equal, respectively. Benzene rings and carboxylate groups were restrained to planarity. For all H atoms,
\[U_{iso}(H) = 1.5 U_{eq}(\text{parent}) \].

Data collection: APEX2 (Bruker 2007); cell refinement: SAINT (Bruker 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b) and pyMOL (DeLano, 2008); software used to prepare material for publication: SHELXL97 and SHELXTL.

Financial support from the ICDD (Ludo Frevel Scholarship Award 2009 for TB), the German National Academic Foundation and the DFG (International Research School 1422 Biometals) is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: EG3012). Services for accessing these data are described at the back of the journal.

References

Table 1

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C7—O9</td>
<td>1.212 (5)</td>
</tr>
<tr>
<td>C7—O8</td>
<td>1.312 (5)</td>
</tr>
<tr>
<td>C10—O11</td>
<td>1.312 (5)</td>
</tr>
<tr>
<td>C10—O12</td>
<td>1.303 (5)</td>
</tr>
<tr>
<td>C27—O28</td>
<td>1.213 (5)</td>
</tr>
<tr>
<td>C27—O29</td>
<td>1.309 (5)</td>
</tr>
<tr>
<td>C30—O32</td>
<td>1.240 (5)</td>
</tr>
<tr>
<td>C30—O31</td>
<td>1.288 (5)</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>D—H···A</th>
<th>D—H</th>
<th>H···A</th>
<th>D···A</th>
<th>D—H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>O8—H8···O51</td>
<td>0.75 (3)</td>
<td>1.97 (3)</td>
<td>2.713 (4)</td>
<td>167 (6)</td>
</tr>
<tr>
<td>O12—H12···O48</td>
<td>0.76 (3)</td>
<td>1.96 (3)</td>
<td>2.719 (4)</td>
<td>177 (6)</td>
</tr>
<tr>
<td>O52—H52···O9</td>
<td>0.76 (3)</td>
<td>1.92 (3)</td>
<td>2.667 (4)</td>
<td>170 (6)</td>
</tr>
<tr>
<td>O49—H49···O71</td>
<td>0.75 (3)</td>
<td>1.93 (3)</td>
<td>2.664 (4)</td>
<td>165 (7)</td>
</tr>
<tr>
<td>O31—H31···O69</td>
<td>0.76 (3)</td>
<td>1.91 (3)</td>
<td>2.649 (4)</td>
<td>165 (6)</td>
</tr>
<tr>
<td>O68—H68···O32</td>
<td>0.75 (3)</td>
<td>1.91 (3)</td>
<td>2.659 (4)</td>
<td>171 (6)</td>
</tr>
<tr>
<td>O72—H72···O28</td>
<td>0.76 (3)</td>
<td>1.92 (3)</td>
<td>2.673 (4)</td>
<td>171 (6)</td>
</tr>
<tr>
<td>O29—H29···O11</td>
<td>0.76 (3)</td>
<td>1.99 (4)</td>
<td>2.662 (4)</td>
<td>147 (6)</td>
</tr>
<tr>
<td>N33—H33···O68</td>
<td>0.88 (2)</td>
<td>2.39 (3)</td>
<td>3.237 (5)</td>
<td>164 (5)</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) x, y, z; (ii) x−1, y, z; (iii) −x+1, y−1, −z+2.